40 research outputs found

    Digital Image Processing

    Get PDF
    Digital image processing is the use of a digital computer to process a digital image using an algorithm. As a subcategory or area of digital signal processing, digital image processing has many advantages over analog image processing. It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as noise accumulation and distortion during processing. This review article provides a comprehensive literature review of various image processing techniques along with a brief introduction to digital image processing that defines its scope and importance, thereby highlighting the importance of its use in the field of electronic engineering applications that are used in today\u27s commercial and industrial scenarios. It takes into consideration the research work done by various leading scholars in the field of electronic engineering and also the description of various software tools like MATLAB which is used for the practical implementation of the given problem lying in its domain

    The complexity of simulating quantum physics: dynamics and equilibrium

    Get PDF
    Quantum computing is the offspring of quantum mechanics and computer science, two great scientific fields founded in the 20th century. Quantum computing is a relatively young field and is recognized as having the potential to revolutionize science and technology in the coming century. The primary question in this field is essentially to ask which problems are feasible with potential quantum computers and which are not. In this dissertation, we study this question with a physical bent of mind. We apply tools from computer science and mathematical physics to study the complexity of simulating quantum systems. In general, our goal is to identify parameter regimes under which simulating quantum systems is easy (efficiently solvable) or hard (not efficiently solvable). This study leads to an understanding of the features that make certain problems easy or hard to solve. We also get physical insight into the behavior of the system being simulated. In the first part of this dissertation, we study the classical complexity of simulating quantum dynamics. In general, the systems we study transition from being easy to simulate at short times to being harder to simulate at later times. We argue that the transition timescale is a useful measure for various Hamiltonians and is indicative of the physics behind the change in complexity. We illustrate this idea for a specific bosonic system, obtaining a complexity phase diagram that delineates the system into easy or hard for simulation. We also prove that the phase diagram is robust, supporting our statement that the phase diagram is indicative of the underlying physics. In the next part, we study open quantum systems from the point of view of their potential to encode hard computational problems. We study a class of fermionic Hamiltonians subject to Markovian noise described by Lindblad jump operators and illustrate how, sometimes, certain Lindblad operators can induce computational complexity into the problem. Specifically, we show that these operators can implement entangling gates, which can be used for universal quantum computation. We also study a system of bosons with Gaussian initial states subject to photon loss and detected using photon-number-resolving measurements. We show that such systems can remain hard to simulate exactly and retain a relic of the "quantumness" present in the lossless system. Finally, in the last part of this dissertation, we study the complexity of simulating a class of equilibrium states, namely ground states. We give complexity-theoretic evidence to identify two structural properties that can make ground states easier to simulate. These are the existence of a spectral gap and the existence of a classical description of the ground state. Our findings complement and guide efforts in the search for efficient algorithms

    The Importance of the Spectral Gap in Estimating Ground-State Energies

    Get PDF
    The field of quantum Hamiltonian complexity lies at the intersection of quantum many-body physics and computational complexity theory, with deep implications to both fields. The main object of study is the Local Hamiltonian problem, which is concerned with estimating the ground-state energy of a local Hamiltonian and is complete for the class QMA, a quantum generalization of the class NP. A major challenge in the field is to understand the complexity of the Local Hamiltonian problem in more physically natural parameter regimes. One crucial parameter in understanding the ground space of any Hamiltonian in many-body physics is the spectral gap, which is the difference between the smallest two eigenvalues. Despite its importance in quantum many-body physics, the role played by the spectral gap in the complexity of the Local Hamiltonian problem is less well-understood. In this work, we make progress on this question by considering the precise regime, in which one estimates the ground-state energy to within inverse exponential precision. Computing ground-state energies precisely is a task that is important for quantum chemistry and quantum many-body physics. In the setting of inverse-exponential precision (promise gap), there is a surprising result that the complexity of Local Hamiltonian is magnified from QMA to PSPACE, the class of problems solvable in polynomial space (but possibly exponential time). We clarify the reason behind this boost in complexity. Specifically, we show that the full complexity of the high precision case only comes about when the spectral gap is exponentially small. As a consequence of the proof techniques developed to show our results, we uncover important implications for the representability and circuit complexity of ground states of local Hamiltonians, the theory of uniqueness of quantum witnesses, and techniques for the amplification of quantum witnesses in the presence of postselection

    Page curves and typical entanglement in linear optics

    Full text link
    Bosonic Gaussian states are a special class of quantum states in an infinite dimensional Hilbert space that are relevant to universal continuous-variable quantum computation as well as to near-term quantum sampling tasks such as Gaussian Boson Sampling. In this work, we study entanglement within a set of squeezed modes that have been evolved by a random linear optical unitary. We first derive formulas that are asymptotically exact in the number of modes for the R\'enyi-2 Page curve (the average R\'enyi-2 entropy of a subsystem of a pure bosonic Gaussian state) and the corresponding Page correction (the average information of the subsystem) in certain squeezing regimes. We then prove various results on the typicality of entanglement as measured by the R\'enyi-2 entropy by studying its variance. Using the aforementioned results for the R\'enyi-2 entropy, we upper and lower bound the von Neumann entropy Page curve and prove certain regimes of entanglement typicality as measured by the von Neumann entropy. Our main proofs make use of a symmetry property obeyed by the average and the variance of the entropy that dramatically simplifies the averaging over unitaries. In this light, we propose future research directions where this symmetry might also be exploited. We conclude by discussing potential applications of our results and their generalizations to Gaussian Boson Sampling and to illuminating the relationship between entanglement and computational complexity.Comment: 29 pages; 2 figures. Version 2: small updates to match journal versio

    Optimal State Transfer and Entanglement Generation in Power-law Interacting Systems

    Full text link
    We present an optimal protocol for encoding an unknown qubit state into a multiqubit Greenberger-Horne-Zeilinger-like state and, consequently, transferring quantum information in large systems exhibiting power-law (1/rα1/r^\alpha) interactions. For all power-law exponents α\alpha between dd and 2d+12d+1, where dd is the dimension of the system, the protocol yields a polynomial speedup for α>2d\alpha>2d and a superpolynomial speedup for α≤2d\alpha\leq 2d, compared to the state of the art. For all α>d\alpha>d, the protocol saturates the Lieb-Robinson bounds (up to subpolynomial corrections), thereby establishing the optimality of the protocol and the tightness of the bounds in this regime. The protocol has a wide range of applications, including in quantum sensing, quantum computing, and preparation of topologically ordered states. In addition, the protocol provides a lower bound on the gate count in digital simulations of power-law interacting systems.Comment: Updated Table I, Additional discussion on a lower bound for the gate count in digital quantum simulatio

    Complexity phase diagram for interacting and long-range bosonic Hamiltonians

    Get PDF
    Recent years have witnessed a growing interest in topics at the intersection of many-body physics and complexity theory. Many-body physics aims to understand and classify emergent behavior of systems with a large number of particles, while complexity theory aims to classify computational problems based on how the time required to solve the problem scales as the problem size becomes large. In this work, we use insights from complexity theory to classify phases in interacting many-body systems. Specifically, we demonstrate a "complexity phase diagram" for the Bose-Hubbard model with long-range hopping. This shows how the complexity of simulating time evolution varies according to various parameters appearing in the problem, such as the evolution time, the particle density, and the degree of locality. We find that classification of complexity phases is closely related to upper bounds on the spread of quantum correlations, and protocols to transfer quantum information in a controlled manner. Our work motivates future studies of complexity in many-body systems and its interplay with the associated physical phenomena
    corecore